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Abstract 

The onset of convection in a couple stress fluid saturated anisotropic 

rotating porous layer is investigated using linear stability analysis, 
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when the fluid and solid phases are not in local thermal equilibrium. 
The linear stability analysis is based on normal mode technique. It is 
assumed that the porous layer is anisotropic. It is also assumed that at 
the bounding surfaces the solid and fluid phases have identical 
temperatures. To study the effect of rotation a coriolis term, is 
incorporated in the momentum equation. A two field model equation 
each representing solid and fluid phase along with anisotropic term is 
used for energy equation. The linear stability theory is used to 
calculate the Rayleigh number for the onset of convection. The effect 
of couple stress parameter, anisotropic permeability and rotation on 
the onset of convection is shown graphically. It is found that the 
rotation, couples tress parameter and thermal anisotropy stabilize the 
system, whereas mechanical anisotropy destabilizes the system. 

Nomenclature 

 a  Horizontal wave number, 22 ml +  

 c  Specific heat 

 d  Height of the porous layer 

 g  Gravitational acceleration 

 K  Permeability tensor, ( ) KzkkjjiiKh ++  

 fk  Thermal conductivity tensor of fluid phase 

 ml,  Wave numbers in the x and y direction, respectively 

 p  Pressure 

 q  Velocity vector, ( )wvu ,,  

 aR  Rayleigh number, ( )
ff

ul
K

KTTd
με
−βρ0  

 T  Temperature 

 t  Time 

 ( )zyx ,,  Space coordinates 
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 Ta  Taylor number 

 H  Inter-phase heat transfer coefficient 

 C  Couple stress parameter 

Greek symbols 

 α  Diffusive ratio 

 β  Coefficient of thermal expansion 

 γ  Porosity-modified conductivity ratio, ( )K
K f
ε−

ε
1

 

 ε  Porosity 

 ξ  Mechanical anisotropy parameter 

 fη  Thermal anisotropy parameter for fluid phases 

 sη  Thermal anisotropy parameter for solid phases 

 eμ  Effective viscosity 

 fμ  Fluid viscosity 

 μ  Dynamic viscosity 

 φ  Non-dimensional temperature of solid phase 

 θ  Non-dimensional temperature of fluid phase 

 fρ  Fluid density 

Other symbols 

 2
1∇  2

2

2

2

yx ∂
∂+

∂
∂  

 2∇  2

2
2
1

z∂
∂+∇  
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Subscripts/superscripts 

 1 Lower 

 s  Solid 

 c  Critical 

 f  Fluid phase 

 0  Reference 

 ∗  Dimensionless quantity 

1. Introduction 

One of the dominant and important mechanisms of heat transfer is 
convection. The study of convection in a fluid and fluid saturated porous 
medium has attracted considerable interest in recent year because of its 
importance in many practical fields such as chemical engineering, 
geothermal activities, oil recovery technique, building thermal insulation and 
biological processes. It is also of practical interest in the extraction of 
geothermal energy. The effective mixing process in petroleum reservoirs, 
regarded as fixed bed reactors is achieved by thermal convection. The study 
of convection has also great impact on many technological applications for 
example the evaluation of the amount of heat removal from a hypothetical 
accident in a nuclear reactor the prevention of convection and consequence 
freezing roads and railways providing effective insulation and so on. 

The study of couple stress fluids has many applications such as 
extraction of polymer fluids, solidification of liquid crystals, cooling metallic 
plates in a bath, exotic lubrications and colloidal and suspension solutions. In 
the category of non-Newtonian fluids, couple stress fluids has a distinct 
feature, such as polar effects. The theory of polar fluids and related theories 
are models for fluids whose microstructure is mechanically significant. 
Couple stress found to be appeared in noticeable magnitude in fluids with 
very large molecules. 

Anisotropy is generally a consequence of preferential orientation or 
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asymmetric geometry of porous matrix or fibers. An excellent review of 
research on convective flow through anisotropic porous media has recently 
been well documented by McKibbin [34] and Storesletten [22]. 

Most of the works on convective instability in porous media have mainly 
been investigated under the assumption that the fluid and porous medium are 
everywhere in local-thermal equilibrium (LTE). However, in many practical 
applications the solid and fluid phases are not in local thermal equilibrium. 
Nield and Bejan [2] have discussed a two field model for energy equation. 
Instead of having a single energy equation, which describes the common 
temperature of the saturated porous media, two equations are used for fluid 
and solid phase separately. In two-field model, the energy equations are 
coupled by the terms, which account for the heat lost or gained from the 
other phase. Rees and co-workers [8, 9] in a series of studies have 
investigated thermal non-equilibrium (LTNE) effect on free convective flows 
in porous medium. The effect of mechanical and thermal anisotropy on the 
stability of gravity driven convection in rotating porous media in the 
presence of thermal non-equilibrium model was investigated by Govender 
and Vadasz [36]. Research on thermal non-equilibrium in porous media is 
provided by Banu and Rees [31] and Malashetty et al. [23-29] whilst 
Kuznetsov [5] provides a detailed review of work on thermal non-
equilibrium effects on convection in porous media. The onset of a Darcy-
Brinkman convection using a thermal non-equilibrium model has been 
studied by Postelnicu [3]. Kuznetsov and Nield [4] have investigated the 
effect of local thermal non-equilibrium on the onset of convection in a 
porous medium saturated by a nano fluid. Recently Srivastava et al. [2] 
investigated magnetoconvection in an anisotropic porous layer using thermal 
non-equilibrium model. A detailed study on thermal non-equilibrium model 
has been carried out by Shivakumara et al. [11-18]. 

The study of effect of local thermal non-equilibrium on the stability of 
natural convection in an oldroyd-B fluid saturated vertical porous layer is 
carried out by Shankar and Shivakumar [6]. 

The external rotation of the fluid or fluid-saturated porous layer is one of 
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the convenient and effective mechanisms to control the onset of convection. A 
possible engineering application of the findings of the current study could 
include the cooling of electronic circuits found in rotating radars. In this 
paper, we study the onset of convection in a couple-stress fluid saturated 
rotating anisotropic porous layer heated from below with emphasis on how 
the condition for the onset of convection is modified by LTNE, anisotropy 
and rotation. 

2. Mathematical Formulation 

We consider a couple-stress fluid saturated anisotropic rotating porous 
layer of depth d, which is heated from below and cooled from above. The 
lower surface is held at a temperature ,1T  while the upper surface is at .uT  

We assume that the solid and fluid phases of the medium are not in local 
thermal equilibrium and use a two-field model for temperatures. The basic 
governing equations are 

,0=⋅∇ q  (1) 

,12 2 gqKpq fef ρ+⎟
⎠
⎞

⎜
⎝
⎛ ∇μ−μ−−∇=×Ω

ε
 (2) 

( ) ( ),2
fsffhffc TThTKTq −+∇ε=∇⋅ρ  (3) 

( ) ,0)1( =−−∇ε− fs TThTK  (4) 

[ ( )].10 uff TT −β−ρ=ρ  (5) 

We eliminate the pressure from the momentum equation and render the 
resulting equation and the energy equations for fluid phase and solid phase 
dimensionless by using the following transformations: 

( ) ( )( ) ( ) ( ) ( ) ,,,,,,,,, ∗∗∗∗∗∗∗ ρ
ρ

μ
ε=

ρ
ε== K

K
pwvud

K
wvuzyxdzyx

fc

f

fc

f  

( ) ( )
( )

.,, *
2

* tK
d

tTTTTTTTT
f

fc
uulsufulf

ρ
ε=+φ−=+θ−= ∗  (6) 
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Equations (2)-(4) take the following form: 
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(The asterisks have been dropped for simplicity.) 

3. Basic State 

The basic state is assumed to be quiescent and is given by 

 ( ) ( ).,,0 zTTzTTwvu sbsfbf =====  (11) 

The basic state temperatures of fluid phase and solid phase satisfy the 
equations 

( ) ,02

2
=−+ fbsb

fb TTH
dz

Td
 (12) 

( ) 02

2
=−γ− fbsb

fb TTH
dz

Td
 (13) 
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with boundary conditions 

 ( ) ( ) 0,0,1 ===== zTTatzzTT sbfbsbfb   at  1=z  (14) 

so that the conduction state solutions are given by 

 ( ) ( ).1 zzTT sbfb −==   (15) 

The basic state is perturbed and the quantities in the perturbed state are given 
by 

 ( ) ( ) .,,,,,, 111 φ+=θ+== sbsfbf TTTTwvuwvu  (16) 

Substituting equations (16) into equations (7)-(9) and using the basic state 
solutions, we obtain the following equations for the perturbed quantities 
(after neglecting the primes) 

,02
12

2

2

2
42 =θ∇−

∂

∂ξ+
∂

∂+∇ξ−∇ξ Ra
z
wT

z
wwCw a  (17) 

( ) ,02

2
2
1 =θ−φγ−

∂

φ∂+φ∇η H
z

s  (18) 

( ).. 2

2
2
1 θ−φ+

∂

θ∂+θ∇η=′+θ∇ H
z

wq f  (19) 

Since the fluid and solid phases are not in local thermal equilibrium, the use 
of appropriate thermal boundary conditions may pose a difficulty. However, 
the assumption that the solid and fluid phases have equal temperatures at the 
bounding surfaces made at the beginning of this section helps in overcoming 
this difficulty. Accordingly, equations (17) to (19) are solved for 
impermeable isothermal boundaries. Hence the boundary conditions are 

 .
1,0at0

1,0at0

⎭
⎬
⎫

==φ=θ

==

z

zw
 (20) 

4. Linear Stability Theory 

To study the linear stability theory, we use the linearized version of 
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equations (17)-(19). The principle of exchange of stabilities holds in the 
presence of anisotropy and non-LTE effects (there is only one destabilizing 
agency) so that the onset of convection is stationary. 

We seek the solutions to the linearized equations in the form 

 [ ] [ ] ( ) ,sinexp,,,, 321 zmylxiAAAw π+=φθ  (21) 

where A’s are constants. Substituting equations (21) in equations (17)-(19) 
we obtain the following matrix equation: 
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⎦
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A
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A

 (22) 

By setting the determinant of the above matrix to zero we get 

( ) ( ) ( ) .1
22

22
22

2

22222

⎥
⎥
⎦

⎤
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⎣

⎡
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⎦

⎤

⎢
⎢
⎣

⎡

ξ

πξ++π+ξ+ξ
=

Ha
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a
TaCaRa

f

s
f

a  

 (23) 

5. Results and Discussion 

Figures 1(a) to 1(f ) show neutral curves for various parameter values. 
From these figures it is clear that the neutral curves are topologically 
connected. This connectedness allows the linear stability criteria to be 
expressed in terms of the critical Rayleigh number below which the system is 
stable and unstable above. Figure 1(a) shows that the effect of rotation on 
neutral curves. It is observed that the minimum Rayleigh number increases 
with increase in rotation indicating the effect of rotation is to stabilize the 
system. Figure 1(b) shows the effect of conductivity ratio γ on neutral curves. 
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It is evident that the minimum Rayleigh number decreases with increase in γ 
which shows that the conductivity ratio γ destabilizes the system. 

Figure 1(c) shows that the effect of couple stress parameter on neutral 
curves. In this case, the increase in Rayleigh number increases with increase 
in couple stress parameter indicating the effect of couple stress parameter is 
to stabilize the system. 

The effects of the thermal anisotropy parameters sη  and fη  for fluid 

and solid phases on neutral curves are shown in Figures 1(d) and 1(e). The 
minimum Rayleigh number increases with increase in sη  and .fη  Thus the 

effect of increase in sη  and fη  delays the onset of convection. It is also 

seen that the effect of thermal anisotropy of fluid phase is more pronounced 
than that of the solid phase on the stability characteristics. Figure 1(f ) shows 
the neutral curves for different values of mechanical anisotropic parameter ξ. 
It is found that the minimum Rayleigh number decreases with increase in ξ. 
Thus the mechanical anisotropy has destabilizing effect on the onset of 
convection. 

Figure 2(a) shows graph of critical Rayleigh number verses inter phase 
heat transfer coefficient H for a range of values of the parameters .aT  We 

observe that the critical Rayleigh number is constant for vary small and large 
values of H. But for modular values of H critical Rayleigh number increases 
with increase in aT  which shows that the effect of aT  makes the system 

more stable. Figure 2(b) represents the effect of conductivity ratio γ on 
critical Rayleigh number. It is found that the critical Rayleigh number 
increases with increase in γ indicating the conductivity ratio enhances the 
stability of the system. It is also observed that the critical Rayleigh number is 
independent of γ for very small values of H. This is because for very small 
values of H there is almost no transfer of heat between the phases. 
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(a) (b) 

  
(c) (d) 

  
(e) (f ) 

Figure 1 (a)-(f ). Neutral curves for different values of (a) Taylor number Ta, 
(b) conductivity ratio γ, (c) couple stress parameter C, (d) thermal anisotropy 
for fluid phase ,fη  (e) thermal anisotropy for solid phase sη  and (f ) 

mechanical anisotropy ξ. 
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(a) (b) 

  
(c) (d) 

  
(e) (f ) 

Figure 2 (a)-(f ). Variation of critical Rayleigh number with interphase heat 
transfer coefficient H for different values of (a) Taylor number Ta, (b) 
conductivity ratio γ, (c) couple stress parameter C, (d) thermal anisotropy for 
fluid phase ,fη  (e) thermal anisotropy for solid phase sη  and (f ) mechanical 

anisotropy ξ. 
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The effect of couple stress parameters on critical Rayleigh number is 
displayed in Figure 2(c). It is observed that with increase in couple stress 
parameters, critical Rayleigh number increases, which shows that the couple 
stress parameter C has the stabilizing effect on the onset of convection. The 
effects of thermal anisotropy parameter for both fluid and solid phases are 
displayed in Figures 2(d) and (e). It is found that acR  in both cases are 

found to increase with increases in fη  and sη  indicating the effect of these 

parameters fη  and sη  is to stabilize the system. 

The effect of ξ on critical Rayleigh number is displayed in Figure 2(f ). It 
is found that critical Rayleigh number acR  decreases with increase in ξ. It is 

also noted that for very small values of H, acR  is constant and increases 

slowly and reaches maximum, then it reaches asymptotic values for large H 
depending on the value of ξ. Let us keep the vertical permeability zK  fixed 

(or the horizontal permeability hK  fixed) and vary the horizontal permeability 

hK  (or the vertical permeability). Then the increased horizontal permeability 

reduces the Rayleigh number, indicating that the system becomes unstable. 
The effect of the anisotropic parameter is more significant for .1<ξ  

Figures 3(a)-(f ) show the critical curves of critical wave number verses 
interphase heat transfer coefficient H for a range of values of Ta, γ, C, ,sη  

fη  and ξ. In these figures we see that the critical wave number is constant 

for very small and large values of H. This is because the solid phase ceases to 
affect the thermal field of the fluid when 0→H  and on the other hand, the 
solid and fluid phases will have identical temperatures when .∞→H  For 
the intermediate values of H, the critical wave number attains maximum 
value for each of the parameters Ta, γ, C, fs ηη ,  and ξ. It is also noted that 

approaches a common limit as 0→H  and ∞→H  in the case of γ. But in 
all other cases critical wave number does not approach to common limits as 

0→H  and as .∞→H  
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(a) (b) 

  
(c) (d) 

  
(e) (f ) 

Figure 3 (a)-(f ). Variation of critical wave number with interphase heat 
transfer coefficient H for different values of (a) Taylor number Ta, (b) 
conductivity ratio γ, (c) couple stress parameter C, (d) thermal anisotropy for 
fluid phase ,fη  (e) thermal anisotropy for solid phase sη  and (f ) mechanical 

anisotropy ξ. 
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6. Conclusion 

The onset of convection in a couple-stress fluid saturated anisotropic 
rotating porous layer using thermal non-equilibrium model is investigated. It 
is found that the increase in rotation Ta makes the system more stable, 
whereas increase in conductivity ratio γ destabilizes the system. The effect of 
increasing couple-stress parameter C and thermal anisotropy parameter ,sη  

fη  delay the onset of convection. The mechanical anisotropy parameter ξ 

has a destabilizing effect on the onset of convection. 
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The impact of heat generated inside the porous layer containing a fluid and density maximum when the porous 
structure is studied analytically subjected to rotation for the case of unlike temperatures of both solid and 
fluid phases. Two equations each representing solid and fluid phases are used as energy equations. The linear 
stability theory is used and is based on normal mode technique. Galerkin method is used to find the Eigen 
values of the problem. The rotation of the porous layer provides extra strength to the system, protecting the 
structure from instability, however internal heat generation does not support the system in retaining its strength, 
causing the system to destabilize. Both the conductivity ratio and the density function have a negative impact on 
system stability. Consequently, the rotation parameter Ta stabilizes the system, whereas internal heat generation, 
conductivity ratio, and density function destabilizes the onset of convection.

1. Introduction

Convective heat transfer is one of the most influenced and powerful mechanism. The study of convective heat transfer in a porous medium 
containing fluid has gained much attention in these days, because of its vital importance in extraction of energy from the surface of the earth. 
It is found that in most of the cases the source of heat is generated by taking itself which leads to setting up of convection by the generation 
of heat inside the layer. In most of natural and practical context in which convection is managed by internal heat sources. Hence the study of 
internal heat generation acquired much significance, because its applications include the storage of radioactive materials, geophysics and combus-

tion.

Nield and Bejan [1] have introduced a model of energy which has two equations is called a two-fluid model. Rees [2, 3] in his paper studied 
through a porous medium when the solid and fluid phases have different temperatures. Govender and Vadasz [4] examined stability of anisotropic 
rotating, driven convection in the layer. The most important investigation on thermal stability in porous media is well documented by Banu and 
Rees [5] and Malashetty et al. [6, 7, 8, 9, 10]. Postelnicu [11] has been investigated the stability of convection by using Darcy-Brinkman model. 
Kuznetsov et al. [12] all have analyzed how the convection in nanofluid saturated in the permeable medium is affected when both fluid and solid 
phases have different temperature.

Yekasi et al. [13] has explored the characterization of heating inside on Rayleigh-Benard convection driven by suction-injection combination by 
considering free rigid boundary. Bhaduria et, al [14] investigated how the time periodic gravity modulation with inside heating on Rayleigh-Benard 
convection in vertically oscillating micro polar fluid. A detailed study on thermal non-equilibrium model has been carried out by Shivakumara et al.

[15, 16, 17, 18, 19, 20, 21, 22]. Dhananjay Yadav et al. [23] examined the effect of inner heating and rotating layer using Darcy–Brinkman model 
and conclude that rotation inhibits the system. Sarvanan [24] has studied the nature of internal heat generation and maximum density function and 
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Fig. 1. Physical configuration.

shows that both the parameters enhance the stability of the system. Gaseer et al. [25] studied the effect interior heating for the onset of convection. 
Chavaraddi et al. [26] gave a conclusion that the couple stress, rotation and thermal anisotropy parameters are stabilizing the onset of convection 
in a saturated medium. Lotten and Rees [27] studied the anisotropy and heat generated inside in an inclined layer. Israel-Cookey and Omubo-Peppl 
[28] studied the stability in a low Prandtl number fluid with heating process inside the structure. Srivastava et al. [29] examined the onset of thermal 
magneto convection in an anisotropic loosely pack medium. Postelnicu [30] studied the effect of inertia on the onset of mixed convection in LTNE 
medium. Xu et al. [31] focuses on various flow and heat transfer modes of nanofluid, metal foam and the combination of the two, with the physical 
properties of nanofluid and metal foam summarized. Oumar et al. [32] have been studied the onset of Rayleigh-Benard electro-convection in a micro 
polar fluid with internally heating particles. A new fractal theoretical model with periodic pore morphology, which idealizes the pore channels of the 
porous media as gourd-shaped structure, is established to model the transport in complex porous media by Wu et al. [33]. Xu [34] investigated the 
theoretical study of the fully-developed forced convection heat transfer in a microchannel partially filled with a porous medium core is performed 
by considering the local thermal non-equilibrium (LTNE) effect between the solid and fluid phases. Anwar Ahmed Yousif et al. [35] investigated 
the impact of using triple adiabatic obstacles on natural convection inside porous cavity under non-Darcy flow and local thermal non-equilibrium 
model. Omar Rafae et al. [36, 37, 38] examined the simulation of complete liquid–vapor phase change process inside porous evaporator using local 
thermal non-equilibrium model.

In most of the situations it is observed that temperature fields of solid and fluid phase of the porous medium are assumed to be identical such 
a situation is generally known as local thermal equilibrium (LTE). However, in many practical situations involving porous material and also media 
in which there is a large temperature difference between the fluid and the solid phases, it has been realized that the assumption of LTE model is 
inadequate for proper understanding of the heat transfer problems. In such circumstances the local thermal non-equilibrium (LTNE) effects are to 
be taken into consideration in which case the single energy equation has to be replaced by two, one for each phase. The main objective of present 
paper is to study the effect of maximum density and internal heating on the stability of rotating fluid using LTNE model.

2. Mathematical model

In this paper, we consider a porous media of height ‘h’ which is extended horizontally between two free surfaces and the fluid is subjected 
to rotation. Let Tl and u be the temperatures at the lower and upper surfaces. The temperature gradient ∇ = l − u is uniform and l >
u maintained between the two surfaces. A momentum expression contains the time derivative term and two separate equations are used for 
temperature. This physical model is shown in Fig. 1.

∇ ⋅ q = 0 (1)

1
𝜀

𝜕𝑞

𝜕𝑡
+ 2

𝜀
𝛺 × 𝑞 = − 1

𝜌𝑜
∇𝑝+ 𝜌

𝜌𝑜
𝑔 − 𝜐

𝑘
𝑞 (2)

𝜀
(
𝜌𝑐
)
𝑓

𝜕𝑇𝑓

𝜕𝑡
+
(
𝜌𝑐
)
𝑓
(𝑞 ⋅∇)𝑓 = 𝜀𝑘𝑓∇2𝑓 + ℎ
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𝑠 − 𝑓
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− 𝛽2

(
𝑓 − 𝑢

)2
(5)

To remove the pressure term from the momentum equation (2) and making equations (3) and (4) dimensionless by using eq. (5) and following 
transformations (6):

(𝑥, 𝑦, 𝑧) = 𝑑
(
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𝜕𝑇𝑓

𝜕𝑡
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𝑠 − 𝑓

)
+𝑄𝑓 (8)

𝛼
𝜕𝑇𝑠

𝜕𝑡
=∇2

1𝑠 +
𝜕2𝑇𝑠

𝜕𝑧2
− 𝛾𝐻

(
𝑠 − 𝑓

)
+𝑄𝑠 (9)

𝑅𝐴 = 𝛽1𝜌0𝑔ℎ(𝜌𝑐 )𝑓
(
𝑙 − 𝑢

)
𝐾∕𝜀𝜇𝑘𝑓 , 𝑅𝑀 = 𝛽2𝜌0𝑔ℎ(𝜌𝑐 )𝑓

(
𝑙 − 𝑢

)2
𝐾∕𝜀𝜇𝑘𝑓 (10)

Here Eq. (10) is the Rayleigh number corresponding to the properties of fluid phase.

Here RM serves as a measure of the density maximum and when to begin property.

𝐻 = ℎ𝑑2∕(1 − 𝜀)𝑘𝑠, the non-dimensional interphase heat transfer coefficient (11)

Ta = 2𝛺𝜌𝑜𝐾∕𝜀𝜇, the Taylor number (12)

𝛾 = 𝜀𝑘𝑓∕(1 − 𝜀)𝑘𝑠, the conductivity ratio (13)

𝛼 = (𝜌𝑐 )𝑠𝑘𝑓∕(𝜌𝑐)𝑓 𝑘𝑠, the diffusivity ratio (14)

𝑄𝑓 = 𝑞𝑓∕
(
𝑙 − 𝑢

)
𝑘𝑓 , the fluid phase internal heat generator parameter (15)

𝑄𝑠 = 𝑑2𝑞𝑠∕
(
𝑙 − 𝑢

)
𝑘𝑠 solid phase internal heat generator parameters (16)

where Eqs. (11)-(13) are Taylor number, conductivity ratio and diffusivity ratio respectively.

2.1. Quiescent state

The basic state is assumed to be quiescent and is given by

𝑢 = 𝑣 =𝑤 = 0 𝑓 = 𝑓𝑏(𝑧) 𝑠 = 𝑠𝑏 (𝑧) (17)

The temperature of fluid phase and solid phase satisfies the equations

𝑑2𝑇𝑓𝑏

𝑑𝑧2
= −𝑄𝑓 ,

𝑑2𝑠𝑏

𝑑𝑧2
= −𝑄𝑠 (18)

with the boundary conditions 𝑓𝑏 = 𝑠𝑏 = 1 at 𝑧 = 0 𝑓𝑏 = 𝑠𝑏 = 0 at 𝑧 = 1 (19)

So that the steady state solutions are given by

𝑇𝑓𝑏 = −
𝑄𝑓

2
𝑧2 +

(
𝑄𝑓

2
− 1

)
𝑧+ 1, 𝑇𝑠𝑏 = −

𝑄𝑠

2
𝑧2 +

(
𝑄𝑠

2
− 1

)
𝑧+ 1 (20)

2.2. Perturbed state

The basic state is perturbed and quantities in the perturbed state are given by

(𝑢, 𝑣,𝑤) =
(
𝑢1, 𝑣1,𝑤1) , 𝑞 = 𝑞1, 𝑓 = 𝑓𝑏 + 𝜃, 𝑠 = 𝑠𝑏 +𝜑 (21)

Substituting equation (21) into (7) to (9) and using equation (20) we obtained following linearized equations for perturbed quantities (after 
neglecting the primes)

1
𝑃𝑟𝐷

𝜕

𝜕𝑡
(∇2𝑤) + (𝑇𝑎)1∕2
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{
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2
+
(
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2
− 1

)
𝑧+ 1

}
∇2
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(22)
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(
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2
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)
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1𝜃 +
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+𝐻 (𝜑− 𝜃) (23)

𝛼
𝜕𝜑
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=∇2

1𝜑+ 𝜕2𝜑

𝜕𝑧2
− 𝛾𝐻 (𝜑− 𝜃) (24)

Since the fluid and solid phases are not in thermal equilibrium, the use of appropriate thermal boundary condition may pose a difficulty. 
However, the assumption that the solid and fluid phases have equal temperatures at the boundary surfaces made at the beginning of this section helps 
in overcoming this difficulty. Accordingly, equations (22) to (24) are solved impermeable isothermal boundaries. Hence the boundary conditions 
are

𝜔 = 𝜕𝜔

𝜕𝑧
= 𝜃 = 𝜑 = 0 at 𝑧 = 0,1 (25)

3
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2.3. Linear stability analysis

To study the linear stability theory, we use the linearized version of equations (22) to (24). The principle of exchange of stabilities holds in the 
presence of isotropy and non-LTE effects (there is only one destabilizing agency) so that the onset of convection is stationary (i.e. 𝜔 = 0). We seek 
the solutions to the linearized equations in the form

[𝑤,𝜃,𝜑] = [𝑊 (𝑧),𝛩(𝑧),𝛷(𝑧)] 𝑒𝑖(𝑙𝑥+𝑚𝑦)sin𝜋𝑧+𝜔𝑡 (26)

Here 𝑙, m is the wave numbers in horizontal plane and 𝜔 is growth rate. Infinitesimal perturbation of the rest state may be either damp or grow 
depending on the values of the parameter 𝜔. Substituting the equations (25) in the equations (22) to (24) we get the following equations[

𝜔

Pr𝐷
(𝑎2 −𝐷2) − (Ta)1∕2𝐷2 + (𝑎2 −𝐷2)

]
𝑊 −[

𝑅𝐴 + 2𝑅𝑀

{
−
𝑄𝑓

2
𝑧2 +

(
𝑄𝑓

2
− 1

)
𝑧+ 1

}]
𝑎2𝛩 = 0 (27)

(
−𝑄𝑓𝑧+

𝑄𝑓

2
+ 1

)
𝑊 +

(
𝜔+ 𝑎2 +𝐻 −𝐷2)𝛩 −𝐻𝛷 = 0 (28)

𝛾𝐻𝛩 +
(
𝛼𝜔+ 𝑎2 + 𝛾𝐻 −𝐷2)𝛷 = 0 (29)

The eigenvalue problem associated with the equations (27)–(29) in a horizontal fluid layer bounded by two rigid walls, governing the stability of 
the basic motion against normal mode perturbations, deduced has the form. We use Galerkin’s technique to solve the Eigen value problem. In the 
Galerkin approach used here the basis (trial) functions satisfy the boundary conditions. In this case, the simplest choice seems to be to write W, 𝛷
and Θ as

𝑊1 = 𝑧3(1 − 𝑧)2, 𝛩 =𝛷 = 𝑧 (1 − 𝑧) (30)

With this choice (30), the unknown functions W, 𝜙 and Θ satisfy the boundary conditions (25) and integrating the equations, so obtained over the 
layer from 0 to 1, we get[

𝑎2

66
+
{
(Ta)

1
2 + 1

} 2
9

]
𝐴1 −

[
𝑅𝐴

2
+𝑅𝑀

{
𝑄𝑓 + 14

36

}]
𝑎2𝐵1 = 0 (31)

(
18 −𝑄𝑓

)
𝐴1 − 168(𝑎2 +𝐻 + 10)𝐵1 + 168𝐻𝐶1 = 0 (32)

−𝛾𝐻𝐵1 + (𝑎2 + 𝛾𝐻 + 10)𝐶1 = 0 (33)

Now to solve RA the above equations (31)-(33) can be put in the form of the following matrix, we get

⎡⎢⎢⎢⎢⎣

𝑎2

66 + {(Ta)1∕2 + 1} 2
9 −

[
𝑅𝐴 +𝑅𝑀

{
−𝑄𝑓

2 𝑧2 +
(
𝑄𝑓

2 + 1
)
𝑧+ 1

}]
𝑎2 0

18 +𝑄𝑓 −168
(
𝑎2 +𝐻 + 10

)
168𝐻

0 −𝛾𝐻 𝑎2 + 𝛾𝐻 + 10

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎣
𝐴1
𝐵1
𝐶1

⎤⎥⎥⎦ =
⎡⎢⎢⎣
0
0
0

⎤⎥⎥⎦ (34)

By setting the determinant of the coefficient matrix (34) to zero, we get

𝑅𝐴 = 448(𝑎2 + 10)
𝑎2(18 +𝑄𝑓 )

[
𝑎2

22
+ {(Ta)1∕2 + 1} 2

3

][
1 + 𝐻

𝑎2 + 𝛾𝐻 + 10

]
− 2

9
𝑅𝑀 (𝑄𝑓 + 14) (35)

3. Result analysis

The impact of internal heating and density maximum in a rotating Darcy-Brinkman porous medium of convection has been investigated using 
Galerkin method. This study is concentrated to steady state of convection because oscillatory mode seems to be highly implausible. Rayleigh number 
Eq. (35) is used to determine the stability of the system. If the Rayleigh number is below or above the critical value then the flow is laminar or 
turbulent. Figs. 2(a) to 2(e) shows that the marginal curves are connected in topological sense and thus the linear stability is calculated in terms of 
critical Rayleigh number. The system is stable below this critical Rayleigh number and unstable above this number. Figs. 2(a) and 2(e) show the 
graph of neutral curves for different values of Ta, 𝑁 , 𝑄𝑓 , 𝑅𝑀 , and 𝛾 . We observe that there is no change in the topological connectedness of the 
curves which shows the neutral nature of these curves. Figs. 3(a) to 3(c) exhibit the effect of N against critical Rayleigh number 𝑅𝐴 for distinct 
values of 𝛾 , Ta and 𝑄𝑓 . Figs. 3(a) and 3(c) discloses that 𝑅𝐴 is decreasing with increase in 𝛾 , and 𝑄𝑓 , as N represents the transfer of heat between 
the fluid and solid phases. If 𝑁 is very small indicates that there is almost zero transfer of heat between the two phases on the other hand if N is 
very large indicates there is a rigorous transfer of heat between the two phases. The behavior of the critical Raleigh number points out that the 
effect of conductivity ratio and internal heat generator of fluid phase is to destabilize the onset of convection. This is because when the conductivity 
ratio increases the fluid part of the medium gains more heat from the solid phase which leads to begin the convection sooner and thereby, the 
critical Rayleigh number decreases. When the critical Rayleigh number decreases it implies that the system is coming closer to destabilized mode. 
The same effect is observed for the case of internal heat generation which is shown in Fig. 3(b). The increase in the internal heat generation causes 
the fluid phase to acquire more heat and thus convection starts early. It is also noted that 𝑅𝐴 is independent of 𝛾 when heat transfer is very less and 
independent of 𝑁 when 𝛾 is very large (≥10). Fig. 3(b) shows the effect of Ta versus 𝑁 on Critical Rayleigh number. It is found that when rotation 
increases, the values of RA rise, demonstrating that rotation of fluid has the impact of improving the system’s stability. The reason is as the rotation 
of the porous layer increases there is a slow distribution of heat in the porous layer and fluid particles get heated slowly thus there is a delay in 
onset of convection which shows that the system is in stable condition.
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Fig. 2. (a): Neutral stability curves Vs ‘a’ for different values of Ta. (b): Neutral stability curves Vs ‘a’ for different values of H. (c): Neutral stability curves Vs ‘a’ for 
different values of Qf . (d): Neutral stability curves Vs ‘a’ for different values of RM . (e): Neutral stability curves Vs ‘a’ for different values of 𝛾 .

Figs. 4(a) and 4(b) display the variation of ‘𝑎’ against 𝑁 for distinct values of 𝛾 and Ta. In Fig. 4(a) it is detected that, for small and large value 
of 𝑁 , the critical wave number is not depending on the values of 𝛾 . But for intermediate values the critical wave number increase with decrease in 
𝛾 and attains a maximum. Fig. 4(b) the critical wave number curves increase with increase in Ta, signifying that the impact of Ta is to improve the 
system stability.

Figs. 5(a) to 5(d) demonstrate the variation of 𝑅𝐴 against 𝑄𝑓 for various values of 𝛾 , Ta, 𝑁 and 𝑅𝑀 . In Fig. 5(a) the effect of 𝛾 on 𝑅𝐴 is displayed. 
It is found that 𝑅𝐴 decreases with increase in 𝛾 , which shows that the conductivity ratio 𝛾 destabilizes the system. In Fig. 5(b) the effect of Ta on 
the 𝑅𝐴 is revealed. It is detected that the 𝑅𝐴 increases with increase in Ta, representing that the Taylor number has stabilizing effect. In Fig. 5(c) 
appear that the effect of 𝑄𝑓 on 𝑅𝐴 is presented for various values of 𝑁 . It is noted that the growing values in 𝑄𝑓 , the values of 𝑅𝐴 decline and 
become zero at some finite value of 𝑄𝑓 . This shows that the 𝑄𝑓 quickens the onset of convection and thus the effect of 𝑄𝑓 causes the instability of 
the system. In Fig. 5(d) depicted that the 𝑅𝐴 decreases as the 𝑅𝑀 increases, which indicating that the system turns into unstable mode due to effect 
of density function.

The comparison presented in Figs. 6(a) and 6(b) is the critical Rayleigh number graphs of present study with the case of Darcy–Benard convection 
(see Banu and Rees [5]).

Figs. 6(a) and 6(b) are very good comparison of critical Rayleigh numbers with the case Darcy-Benard convection studied by Banu and Rees [5].
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Fig. 3. Variation of RA against H for different values of 𝛾 . (b): Variation of RA against H for different values of Ta. (c): Variation of RA against H for different values 
of Qf .

Fig. 4. (a): Variation of ‘a’ against ‘H’ for different values of 𝛾 . (b): Variation of ‘a’ against ‘H’ for different values of Ta.

The comparison of critical wavenumber graphs of present study with Darcy–Benard convection done by Banu and Rees [5] is given in Figs. 6(c) 
and 6(d).

The critical wavenumbers in Figs. 6(c) and 6(d) show the good comparison with the work done by Banu and Rees [5]. Also, the results obtained 
are presented in Tables 1 and 2, shows a favorable agreement of present work with the results of Banu and Rees [5] in the absence of rotation, 
internal heat generation and maximum density function thus give confidence that the numerical results obtained are accurate.

4. Conclusion

The stability of a fluid saturated rotating porous layer with internal heat generation and density maximum is studied when both fluid and solid 
phases have different temperatures. Galerkin method is used to find the Eigen values of the problem. The effect of internal heat generation, rotation 
and conductivity ratio is determined and demonstrated graphically. The following conclusions have been drawn point by point:
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Fig. 5. (a): Plots of RA versus Qf for different values of 𝛾 . (b): Plots of RA versus Qf for different values of Ta. (c): Plots of RA versus Qf for different values of H. 
(d): Plots of RA versus Qf for different values of RM .

Table 1. Comparison of the critical Rayleigh number of present study with the case of Darcy–Benard convection done by 
Banu and Rees [5] in the absence of rotation, internal heat generation and maximum density function.

Variation of critical Rayleigh number versus logH for specific values of 𝛾

H Critical Rayleigh number obtained for the case of present study Critical Rayleigh number obtained by Banu and Rees [5]

𝛾 = 0.1 𝛾 = 0.3 𝛾 = 0.5 𝛾 = 1 𝛾 = 0.1 𝛾 = 0.3 𝛾 = 0.5 𝛾 = 1
-2 39.50864 39.50863 39.50863 39.50863 39.50871 39.50870 39.50870 39.50870

-1 39.69856 39.69833 39.69811 39.69755 39.68835 39.68815 39.68795 39.68745

0 41.56690 41.54569 41.52491 41.47464 41.45493 41.43599 41.41741 41.37239

1 58.14440 56.70393 55.43970 52.90179 57.06386 55.79444 54.66823 52.37010

2 163.2115 118.4482 96.35335 72.67197 156.4227 116.2631 95.33384 72.35688

3 370.3745 163.3230 115.6035 78.24936 366.9394 162.8960 115.4474 78.21098

4 427.0948 170.2972 118.1683 78.90134 426.6959 170.2506 118.1551 78.89954

5 433.6257 171.0306 118.4330 78.96766 433.5968 171.0312 118.4350 78.96963

6 434.2889 171.1044 118.4596 78.97430 434.2979 171.1091 118.4630 78.97663

7 434.3553 171.1118 118.4623 78.97497 434.3680 171.1169 118.4658 78.97733

8 434.3620 171.1125 118.4625 78.97503 434.3750 171.1176 118.4661 78.97740

9 434.3627 171.1126 118.4626 78.97504 434.3757 171.1177 118.4661 78.97741

10 434.3627 171.1126 118.4626 78.97504 434.3758 171.1177 118.4661 78.97741

• The rotation of the porous layer if offering extra strength to the system thereby protecting the structure from instability, whereas the internal 
heat generation does not support the system in maintaining its strength and thus takes the system from a safe zone to a dangerous zone of 
destabilization.

• The conductivity ratio and density function also have a negative effect on the system stability i.e., both factors oppose the system stability and 
conductivity ratio is to advance the onset of convection.

• The effect of rotation of porous layer modified conductivity ratio is to enhance the heat transport.

• The overall conclusion is that the rotation parameter Ta stabilizes the system whereas the internal heat generation, conductivity ratio, and 
density function are having a destabilizing effect on the onset of convection.
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Fig. 6. (a): Variation of RA v/s H for specific values of 𝛾 in present study. (b): Variation of RA v/s H for different values of 𝛾 in DAS Rees et al. result. (c): Variation 
of ac v/s H for different value of 𝛾 in present study. (d): Variation of ac v/s H for different value of 𝛾 in Rees et al. result.

Table 2. Comparison of the critical wavenumber of present study with Darcy–Benard convection 
done by Banu and Rees [5] in the absence of rotation, internal heat generation and maximum 
density function.

Variation of critical wavenumber versus logH for specific values of g

H Present study Banu and Rees [5]

𝛾 = 0.1 𝛾 = 0.3 𝛾 = 0.5 𝛾 = 1 𝛾 = 0.1 𝛾 = 0.3 𝛾 = 0.5 𝛾 = 1
-2 3.13958 3.13958 3.13958 3.13958 3.14643 3.14643 3.14643 3.14643

-1 3.14804 3.14804 3.14804 3.14804 3.14643 3.14643 3.14643 3.14643

0 3.14804 3.20662 3.20662 3.19832 3.21714 3.21714 3.21714 3.20936

1 3.14804 3.57378 3.50662 3.39936 3.69459 3.61939 3.55668 3.43511

2 3.14804 3.61783 3.40714 3.24778 4.61519 3.72156 3.46410 3.27109

3 3.14804 3.19832 3.17329 3.14804 3.42783 3.21714 3.18591 3.15436

4 3.14804 3.13958 3.13958 3.13958 3.17017 3.14643 3.14643 3.14643

5 3.14804 3.13958 3.13958 3.13958 3.14643 3.14643 3.13847 3.13847

6 3.14804 3.13958 3.13958 3.13958 3.13847 3.13847 3.13847 3.13847

7 3.14804 3.13958 3.13958 3.13958 3.13847 3.13847 3.13847 3.13847

8 3.14804 3.13958 3.13958 3.13958 3.13847 3.13847 3.13847 3.13847

9 3.14804 3.13958 3.13958 3.13958 3.13847 3.13847 3.13847 3.13847

10 3.14804 3.13958 3.13958 3.13958 3.13847 3.13847 3.13847 3.13847
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Abstract. The study of non-equilibrium thermal convection in an anisotropic porous layer saturated with a visco-elastic 
fluid is carried out to find how the anisotropy and non-equilibrium of temperature affect the  onset of convection. The 
small perturbation method is applied to obtain the linearized form of equations are then solved by using the normal mode 
technique. The viscoelasticity is considered by taking Oldrovd-B momentum equation and two separate expressions are 
used for the energy equation, out of these one represents solid and anther for fluid medium. The effect of both anisotropy 
and non-equilibrium on the oscillatory and stationary modes of convection has been studied. Apart from these the effect 
of conductivity ratio, diffusivity ratio, and Darcy Prandtl number is also observed and presented graphically. The stability 
of the system is protected by thermal anisotropy and diffusivity ratio. But mechanical anisotropy and conductivity ratio 
are taking the system in destabilizing mode. 

Key Words: Thermal Convection, Viscoelastic fluid, Thermal non-equilibrium, Anisotropy. 

Nomenclature 

 horizontal wavenumber   
 specific heat 
 height of the layer confined between two free 

surfaces  
 gravitational acceleration 

 wave numbers in the x and y-direction  
 respectively,   
n       heat transfer coefficient   
N dimensionless heat transfer coefficient,  
k  unit vector in Z direction 

 thermal diffusivity,   
 permeability tensor,  

the tensors representing thermal conductivity for 
fluid and solid phases. 

 Darcy Prandtl number,  
 pressure 
 velocity vector,  

 Rayleigh number,   

 temperature 
 time 

 Coordinates of space 
Greek symbols 

 diffusivity ratio,  

 thermal expansion coefficient  

 conductivity ratio  
 non dimensional stress relaxation parameter,  

  
 porosity 
 mechanical anisotropy 
 fluid viscosity 
 frequency  
 dimensionless temperature (solid) 
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 dimensionless temperature (fluid) 
 fluid density 
 stress-relaxation time 
 strain-retardation time 

 dimensionless retardation to relaxation time 
ratio,  

 dynamic viscosity  
 kinematics viscosity,  

 
Other symbols 

  

  
Subscript/ Superscripts 
b      base state 

 lower 
s solid phase 

 upper 
f fluid phase 
* dimensionless quantity 
′ perturbed quantity 

 thermal anisotropy (fluid)                                   thermal anisotropy (solid) 
 

INTRODUCTION 

Since in many fields such as geothermal energy usage, oil reservoir modeling, building thermal insulation and 
nuclear waste disposals, the study of convective instability has been motivated by its theatrical and practical 
importance. As the most theorical works on convective instability has delt with isotropic porous media, but in many 
circumstances the porous matrix is anisotropic with respect to its mechanical and thermal properties.   

The problem of viscoelastic fluid flow through porous medium is the most interesting because it links the 
complexities of non-Newtonian fluids and porous media and also includes many applications in areas such as 
science, engineering and technology material processing, petroleum, chemical and nuclear industries, bioengineering 
and reservoir engineering. Thus, there have been many attempts to find a suitable model to predict the viscoelastic 
effects in the flows through a porous matrix. 

Banu and Rees [1] were reported the Darcy-Benard convection by means of the thermal non-equilibrium model. 
Chavaraddi et al [2] examined the stability of an anisotropic rotating couple stress fluid in a porous media. Govender 
[3] has analyzed the results of anisotropy and rotation in a porous media. A detailed study on the thermal non-
equilibrium model has been carried out by Malashetty et al [4-6]. Postelnicu [7] studied the nature of inertia on the 
onset of mixed convection through TNEM.  Shivakumara et al [8-9] have investigated the Darcy-Brinkman 
convection in an anisotropic saturated porous layer using a LTNE. This paper presents the study of convective 
instability in an anisotropic porous layer with visco-elastic fluid for both oscillatory and stationary modes.  

MATHEMATICAL FORMULATION 

  An anisotropic porous layer of height ‘h’ with visco-elastic fluid confined between two free surfaces is 
taken for the study. The lower surface is subjected to heating and the top surface is allowed to cool. Let and be 
temperatures at the lower and upper surfaces respectively ( > ). It is assumed that the temperatures of both solid 
and fluid medium are not alike except at bounding surfaces so that the use of separate energy equation for both the 
medium and Darcy-Model to a moment expression yield the better analysis. The physical phenomenon is governed 
by the following equations, 

                                                                     (1) 
                                  (2) 

                               (3) 

                                        (4) 
                                                      (5) 

To remove pressure term in (2) by operating curl twice on it and render the resulting expressions (3) to (5) 
dimensionless by using the following transformations 
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                    (6) 

to obtain 

                                 (7) 

                                       (8) 

                                              (9) 

                      Where, 

   
                                      (10) 

 

Basic State 

It is assumed that the basic state is inactive and therefore  
                                                 (11)

 The temperatures of fluid and solid medium in the basic state satisfies the results 

                                                             (12) 

                                                            (13) 
with the boundary conditions, 

                                        (14) 
The basic state solutions satisfying the conditions (14) are 

                                                            (15) 
 

Perturbation State 
 

As there are small disturbances in the basic sate and therefore the temperature and the velocity components 
under perturbed state are given by               

                                        (16) 
Substituting (16) into (7) to (9) with the basic state result we get the perturbed expressions, 

  (17) 

                                                (18) 

                                               (19) 

The hypothesis made in the beginning that the both phases have identical temperatures at the bounding surfaces 
resolved the difficulty of non-equilibrium thermal condition. Now the equations (17 to 19) are solved for isothermal 
boundaries. Thus, the end conditions are 

                                                              (20) 

 

Linear Stability Analysis 
 

The linear version of {(17)-(19)} is used to study the linear stability theory under the boundary conditions (20). 
The following is the linearized form of equation is used to seek the desired result. 
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                           (21) 
Where  represents the wave numbers and is the growth of disturbance in time ‘t’, which is 

assumed to be real. Substituting (21) in (17 to 19) we get  

                      (22) 

                                              (23)                           
                                                (24) 

Where  now the boundary conditions become  
                                                   (25)                             

Let us assume the solutions to are in the form  
                                     (26) 

Since (26) satisfy the boundary conditions (25) therefore substitute (26) in the equations (22)-(24) we get the 
following matrix. 

                   (27)                             

Where, , is the total wave number,  
 Equating the determinant of the above coefficient matrix to zero we get RL. 

RL                                                     (28)
 Taking  in equation (28), ignoring imaginary terms in denominator, we get  

              (29) 

Where,  (30 

       (31) 

Since  is a constant, it must be real. Thus, by (29) it follows that either  (stationary) or  ( , 
oscillatory). 

i) Stationary Mode  
The onset becomes steady if then (29) reduces to 

                                                             (32) 

ii) Oscillatory Mode 
 For oscillatory mode  ( ) and hence this yields quadratic polynomial 
of the form 

    (33) 

Then                                      (34) 
 

Where  
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If then   and .Thus (33) will not have any positive roots. But (33) has positive roots.  
If this is the necessary condition for oscillatory onset. 
If then (29) becomes 
 

(35) 

RESULT ANALYSIS 

The expression (32) representing the stationary Rayleigh number is found to be free from the viscoelastic 
parameters, therefore it is the case of anisotropic porous layer saturated with Newtonian fluid investigated by 
Malashetty et al [6]. Expression (35) represents oscillatory critical Rayleigh number which characterizes the stability 
of the system. Figure [1(a) to 1(h)] show the graph of Critical Rayleigh number (RL) versus heat exchange between 
solid and fluid medium (  for different values of other parameters. Figure 1(a) displays the outcome of   on RL. 
In this graph the critical values of the Rayleigh number are found to decrease with a decrease in thermal anisotropy. 
When thermal anisotropy is less means that the conductivity of solid phase along horizontal direction is lesser than 
the conductivity in the vertical direction which yields to increase in the critical Rayleigh number. The same result is 
observed in the case of effect of thermal anisotropy for fluid medium in figure 1(b), because the conductivity 
property is same for both fluid and solid medium. Figure 1(c) shows the variation of RL with N. It is observed that 
when the transfer of heat between the solid and fluid media is at the beginning stage i.e when N is very small almost 
equal to zero, then the two curves remain unchanged for different values of conductivity ratio γ this is because when 
heat transfer between the two media is almost zero, the porous medium acquire minimum heat and conductivity ratio 
does not affect the basic properties of the medium. Therefore, the conductivity ratio does not affect the heat transfer 
process for small N. But one can observe this behavior disappears for large values of N corresponds to transfer of 
heat between the two media to a greater extent. Therefore, for large values of N the critical Rayleigh number 
decreases with an increase in conductivity ratio. Figure 1(d) shows the change in RL with N for different values of ξ. 
In this graph, the values of the critical Rayleigh number are decreasing with an increase in mechanical anisotropy. It 
is observed that the critical Rayleigh number is constant for very small values of N and increases slowly, reaches 
maximum and takes asymptotic values depending on the values of ξ for large values of N. This is understood as 
varying horizontal permeability and keeping vertical permeability fixed the increased horizontal permeability 
reduces RL.  

Figure 1(e) displays the result of dimensionless stress relaxation time  on the onset for a fixed value of the other 
dimensionless terms. In this case the critical value of RL decreases with an increase in the value of ..  .  Figure 1(f) 
illustrate the effect of Pr on RL. It is found that the increase in the value of Prandtl number is to decrease the value of 
RL and thus makes the system more unstable. Figure 1(g) displays the impact of  on RL. We observe that an 
increase in the value of  increases the critical value of RL for the oscillatory mode. The result of , the retardation-
to-relaxation-time ratio, on the oscillatory critical Rayleigh number is shown in Fig 1(h). We observe that the critical 
oscillatory Rayleigh number decreases with decrease in the value of . For very small , that is for , the 
critical oscillatory Rayleigh number is found to be independent of the interphase heat transfer coefficient N. 

Figure [2(a) to 2(h)] shows the sequential change in critical wave number against N for both modes of onset with 
different values of other physical quantities. It is observed that the curves are constant for very small and very large 
values of N. This happened because, as N tends to zero the solid phase stops the performance of the thermal field of 
the fluid and when N tends to infinity both phases have alike temperatures. But for intermediate values of N, the 
critical wave number attains the extremum for each  ,  , γ, ξ, Γ, Λ, α, and Pr. It is also noted that the critical 
wave number tends to two limits one as N tends to zero and another as N tends to infinity for both modes of onset. 
But for the moderate values of N the critical wave number is increasing with an increase in values of  , , α, and 
Pr as shown in figure 2(a), 2(b), 2(g) & 2(h), but it is decreasing with an increase in the value of γ, ξ, Γ and Λ as 
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shown in figure 2(c), 2(d), 2(e) & 2(f) indicating that both thermal anisotropy, diffusivity ratio, Prandtl number have 
enhanced the stability of the system, whereas the γ, ξ, Γ and Pr make the system unstable.  

 The impact of N on the critical vale of frequency of the over stable motion for various values of  , , Pr, Λ, γ, 
and α is exhibited in figure [3(a) to 3(f)]. It is observed that the frequency increases with an increase in ,  and Pr 
in figures [3(a) to 3(c)] indicating that both the thermal anisotropy of solid and fluid phases and the Prandtl number 
enhance the stability of the system. But the graph [3(d) to 3(f)] shows that increase in , γ and α decreases critical 
frequency. 
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CONCLUSION 

The non-equilibrium thermal convection in an anisotropic porous layer saturated with a visco-elastic fluid is 
carried out to find how the anisotropy and non-equilibrium of temperature affect the onset of convection. It is 
observed that both thermal anisotropies have a positive impact on the stability of the system. That is the thermal 
anisotropy is making the system stable whereas the conductivity ratio and mechanical anisotropy have a negative 
impact on the stability of the system, which leads to destabilization. The diffusivity ratio and stress relaxation 
parameters bring the system in safe mode, whereas the mechanical anisotropy parameter reduces the stability of the 
system. The retardation-to-relaxation-time ratio will make to start the convection lately. 
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